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Abstract

Background: The purpose of the study was to compare the microhardness values of composite resins polymerized with different modes 
of a third-generation light curing unit (LCU).

Methods: Three nanohybrid composites (Filtek Z550 3M ESPE MN USA, Spectra ST HV Konstanz GERMANY, Tetric N-Ceram Liechtenstein) 
and one mircohybrid composite (Filtek Z250 3M ESPE MN USA) were used. Eighteen samples (8 × 2 mm) were prepared for each com-
posite (n = 18). Half of them were cured with light-emitting diode (LED) LCU’s (VALO; Ultradent USA) standard mode, the other half 
were cured in Xtra power mode.

The Vickers microhardness test was performed at the polished surface for 3 times of each specimen.

Results: For each composite, no significant difference was detected between the cure modes. For standard mode, a statically significant 
difference was detected between all composites, except for Tetric N-Ceram and Spectra ST HV. For Xtra power mode, a significant differ-
ence was detected between all composites, except for Z550 and Z250.

Conclusion: Xtra power cure for a microhybrid composite was showed the highest microhardness value. When the composites were 
compared with each other, the effect of Xtra power on microhardness values varied depending on the composites. The modes used of 
the light device did not affect the microhardness values of the composite resins used in the study.
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INTRODUCTION

For many years, resin composites have been the material of choice for dental fillings in clinical dentistry.1 Composite resins 
have undergone many advances with the development of their various types.2 And they still rank among the most popular 
restorative materials because of their excellent mechanical qualities, high function, and aesthetics.3,4 Microhybrid compos-
ites are composed of bigger filler particles with an average size of 0.01-0.1 μm mixed with microfill particles. These have 
the advantages of improved physical properties, high fill percentage, and enhanced aesthetics. Larger particle sizes indicate 
that the primary disadvantage of this group is the challenge of maintaining high polish over an extended period of time. To 
address this issue, nanohybrid composites were created, which contain nanomeric particles in a conventional resin matrix.5

For a restoration to be clinically successful, resin composites’ surface microhardness is critical; thus, the restorative material’s 
resistance to scratches and surface wear improves with increasing microhardness.6
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For the dental composite resin photopolymerization, several 
technologies, including laser, plasma-arc, quartz-tungsten 
halogen, and light-emitting diode (LED), have been sug-
gested for use.7 Light-curing resin-based restorative materi-
als can be polymerized with various light sources. The most 
commonly used of these light sources are quartz-tungsten 
halogen light sources. Although it has the advantage of 
being low in cost, it has some disadvantages as the curing 
depth is limited, the curing time is long, and the light inten-
sity decreases over time. In order to eliminate these disad-
vantages, LED light devices have been introduced to the 
market.8 Because of its longer lifespan, cordless functioning, 
and lack of filter requirement, LED lights seem to provide 
the greatest technology available.9 The first- and second-
generation LEDs have some deficiencies10-11 Manufacturers 
have claimed that they can reduce light exposure time by 
increasing the light output of the device. In other words, 
if the radiation increases, the polymerization time may be 
shortened. The first- and second-generation LED LCUs can 
polymerize resin-based composites (450-470 nm) contain-
ing camphorquinone as photoinitiator in 20-40 seconds. 
However, over time, resin-based composites containing dif-
ferent photoinitiators have been introduced to the market. 
To activate these alternative photoinitiators and achieve 
adequate polymerization, third-generation LED LCUs have 
been developed that emit polywave light and can pro-
vide sufficient polymerization with short-term curing.12 To 
enable polymerization of restorative materials utilizing more 
than only CQ (camphoroquinone) as initiator, producers of 
curing lights had to provide sets of LED chips that radiated 
many wavelengths. A third-generation LED curing device 
was recently introduced to the market. Depending on the 
mode selected, it can achieve irradiances of up to 3200 

mW/cm2 and deliver adequate polymerization in 3 sec-
onds.13 Samples polymerized using high-intensity LED LCUs 
have been shown to have improved DC and microhardness 
values in a number of studies. Additionally, a logarithmic 
relation between the energy density of the light device and 
the hardness value of resin composites was found.14-17 An 
additional study revealed that the hardness value was unaf-
fected by light intensities above 1000 mW/cm2.18

The power of dental LED LCUs can affect the microhard-
ness values of composite resins. The use of devices with high 
power can lead to better polymerization and therefore a bet-
ter microhardness value. However, there are not many stud-
ies on the hardness of composite resins containing different 
photoinitiators.

As a result, this study examines the microhardness of various 
composite resins after polymerization using different modes of 
third-generation LED light curing unit (LCU)’s different modes.

The null hypothesis was that there wouldn’t be any difference 
between the microhardness of composites cured with differ-
ent modes of a third-generation LED LCU.

MATERIAL AND METHODS

Ethics committee approval was not needed because this 
study used only inanimate materials.

Preparation of Samples
Three nanohybrid composites (3M Filtek Z550, Spectra ST 
HV, Tetric N-Ceram), one microhybrid composite (3M Filtek 
Z250), and a third-generation LED LCU (VALO, Ultradent, 
USA) were used in this study (Table 1).

Table 1. Materials Used in the Study
Material Organic Matrix Filler Particles/İnitiators Company
3M Z250 (Shade A2) 
(microhybrid composite 
resin)

BisGMA, UDMA, Bis-EMA, fuorescent 
agents, pigments, stabilizers, and 
initiators

Zirconia/silica: 3 μm or less, zirconia/silica cluster, 
surface-treated silica: 20 nm, 78,5% (w) 60% (v)

3M/ESPE, St. 
Paul, MN, USA

3M Z550 (Shade A2) 
(nanohybrid composite 
resin)

BisGMA, UDMA, TEGDMA, BisEMA, 
PEGDMA

20 nm silica + 0.1-10 lm zirconia/silica 82% (w) 
68% (v)

3M/ESPE, St. 
Paul, MN, USA

Spectra ST HV (Shade 
A2) (nanohybrid 
composite resin)

Dimethacrilate resin, ethyl -4-(d imeth 
ylami no)be nzoat e

SphereTEC® fillers (d3, 50≈15 μm); non-
agglomerated barium glass and ytterbium fluoride; 
filler load (78-80 wt%) (60-62% v); highly 
dispersed, methacrylic polysiloxane nanoparticles, 
initiator: CQ, EDMAB

Dentsply Sirona 
Konstanz 
GERMANY

Tetric N-Ceram (Shade 
A2) (nanohybrid 
composite resin)

%19-%20 Bis
GMA, UDMA, Dimethacrylates

Barium glass filler, Ba-Al fluorosilicate glass, 
Ytterbium trifluoride (0.7-1 μm mean filler size), 
mixed oxide, highly dispersed silica, prepolymers, 
additives, stabilizers and catalysts, pigments 80% 
(w) 55-57% (v)

Ivoclar vivadent 
AG, 
Liechtenstein

Light Curing Unit Type Irrad ianc e/Rec ommen ded Curing Time Manufacturer
VALO LED third-generation polywave Standard mode (1000 mW/cm2) 20s – High-power 

mode (1400 mW/cm2) 8s – Xtra power mode 
(3200 mW/cm2) 3s

Ultradent 
Products Inc, 
South Jordan, UT, 
USA



İyibilir et al.
The Effect of Polymerization on Microhardness Essent Dent 2024; 3(2): 39-44

41

For reducing the impact of colorants on polymerization, shade 
A2 was chosen, and 2 mm samples were used to ensure even 
polymerization.

Seventy-two disk-shaped samples made of restorative mate-
rials were placed in an 8 × 2 mm Teflon mold. Each compos-
ite included 18 samples. A Mylar strip was placed over the top 
and bottom of the mold, and the extra product was pushed 
out by pressing a glass slide up against the strip. After that, 
the glass plate was taken off, and the curing unit’s light tip 
was placed concentrically within the mold’s cavity, 0.5 mm 
above the sample.

For each composite, half of the samples were cured with 
the standard mode of LCU for 20 seconds, and the other 
half were cured with the Xtra power mode for 3 seconds. 
After curing, the cured surfaces of all the samples were 
polished for 10 seconds each with polishing discs (Shofu 
Super Snap Finishing&Polishing disk) with L506, L508, 
L501, and L502.

Microhardness Measurements
After each sample was kept in distilled water for 24 hours in 
the dark, microhardness of the polished surface of each sam-
ple was measured using a Vickers hardness tester. The sur-
face hardness value of each sample was taken with a surface 
hardness device (Innovatest FALCON 300G2) using a 200 
g load 15 seconds, and the measurements were recorded. 
The power of the light source was measured with a radi-
ometer (Hilux Ledmax Light Curing Meter, Benlioglu Dental 
Inc., Ankara, Türkiye) after each sample was prepared. Three 
measurements were taken from the middle region of each 
sample, no closer than 1 mm to each other or to the edges, 
and the average of the 3 measurements was considered a 
single value for each sample.

Statistical Analysis
The Number Cruncher Statistical System (Utah, USA) pack-
age program was used for statistical analyses. After the 
normality test (Shapiro–Wilk), 2-way ANOVA was used to 
compare the composites within themselves and with each 
other for normally distributed variables. Subgroup compari-
sons were tested with Tukey’s multiple comparison test, and 
intraclass correlation was used to determine microhardness 
measurement reliability. The coefficient and 95% CI were 
used. P < .05 is the level of statistical significance. (Table 2).

RESULTS

In standard mode, a difference was observed between the 
Z550, Z250, Tetric N-Ceram, and Spectra ST HV composite 
groups (P = .0001). The microhardness values of Z250 were 
found to be statistically significantly higher than the micro-
hardness values of Z550, Tetric N-Ceram, and Spectra ST 
HV (P = .011, P = .0001). The microhardness values of Z550 
was found to be statistically significantly higher than those 
of Tetric N-Ceram and Spectra ST HV (P = .0001). No sta-
tistically significant difference was observed between Tetric 
N-Ceram and Spectra ST HV (P = .804).

In Xtra Power mode, a statistically significant difference was 
observed between Z550, Z250, Tetric N-Ceram, and Spectra 
ST HV (P = .0001). While the microhardness values of Z550 
and Z250 were seen to be statistically significantly higher 
individually than Tetric N-Ceram and Spectra ST HV (P= 
.0001), no significant difference was observed when com-
pared to each other (P = .542).

When the 2 cure modes were compared for each compos-
ite used in the study, no significant difference was found 
between the microhardness values (P = .233). (Table 3).

DISCUSSION

One of the most important parameters that can be evaluated 
to obtain information about the physical properties of den-
tal materials is microhardness. Hardness is typically associated 
with resistance to intraoral softening, mechanical strength, and 
rigidity. The microhardness value is also related to the polym-
erization of the material and therefore may vary depending 
on the polymerization device used. In our study, the standard 
mode and Xtra power mode of the VALO LED LCU were used 
in the polymerization of different composite groups, and the 
microhardness values of the samples were measured.

Table 3. Mean Vickers Microhardness Values of Composite 
Materials for Standard and Xtra Power Modes of LED LCU
Material Group Standard Xtra Power
Z550 66.33±8.20 A a 80.58 ± 6.83 A a
Z250 77.52±5.47 A b 76.52 ± 6.40 A a
Tetric N-Ceram 47.56±6.66 A c 38.92 ± 7.70 A b
Spectra ST HV 44.54±7.79 A c 47.60 ± 4.13 A c
Means followed by distinct capital letters represent statistically significant differences in 
each row (P < .05).
Means followed by distinct lowercase letters represent statistically significant differences 
in each column (P < .05).

Table 2. Statistical Comparation of Materials and Cure Modes
Microhardness (MPa) Type III Sum of Squares df Mean Square F P
Intercept 258746.20 1 258746.20 5657.17 .0001
LCU 66.23 1 66.23 1,.45 .233
Material 17021.58 3 5673.86 124.05 .0001
LCU * Material 1229.70 3 409.90 8.96 .0001
LCU, light curing unit.
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In our study, microhardness evaluations were made 24 hours 
after light curing. In many similar studies, microhardness 
measurements were made after 24 hours to ensure that the 
samples reached maximum hardness.19,20

As a result of polymerization under standard mode and Xtra 
power mode, there was no significant difference between 
the microhardness values of each composite. Therefore, 
the null hypothesis that there would not be any difference 
between the microhardness of composites cured with differ-
ent modes of a third-generation LED LCU was accepted. As 
a result of polymerization under standard mode, the micro-
hardness values of Z250 were found to be significantly higher 
than the microhardness values of Z550, Tetric N-Ceram, 
and Spectra ST HV. In accordance with our study, Mobarak 
et  al.21 also showed in their study that the microhardness 
values of microhybrid composites polymerized with an LED 
LCU and containing camphorquinone were higher than other 
composites. In another study, microhybrid Filtek Z250 and 
a BisGMA-free nanohybrid Purefill composite group were 
compared with each other, and the microhardness values of 
Z250 were higher than Purefill. They explained that the sur-
face hardness of composite resins is affected by the organic 
structure of the material and the ratio and size of inorganic 
fillers.22 They stated that high BisGMA content increased the 
microhardness values. In our study, Z250 and Z550 showed 
the highest microhardness values. Z250 and Z550 have a 
high molecular weight monomer structure such as BisGMA 
and Bis EMA. Since these monomers with high molecular 
weight form more intense cross-links, higher microhardness 
values may have been observed in the Z250 and Z550. Also, 
it was reported that the zirconia content in Z550 may have 
been a factor in the high surface hardness.23

In contrast to our findings, Jafarzadeh et al.24 found the high-
est microhardness value for Tetric N-Ceram, a microhybrid 
composite, and the lowest microhardness value was recorded 
for Ceram-X Mono, a nanohybrid composite. They also 
revealed, consistent with some previous studies. Jafarzadeh 
et al. also revealed that there was no significant difference 
in the microhardness values of composite resins when QTH 
or LED LCEs were used for polymerization, consistent with 
some previous studies.24 There was no significant difference 
in the microhardness values of composite resins when QTH 
or LED LCUs were used for polymerization. In our study, Tetric 
N-Ceram showed lower microhardness values than other 
composites. Besides the filler type and density, the hardness 
of composites may also depend on other factors such as the 
size of the filler particles and the volume of content.25 In our 
study, Tetric N-Ceram had the lowest filler density by vol-
ume. Therefore, it can be thought that the low microhard-
ness value may be due to this.

In Xtra power mode, the microhardness values of the Z550 
composite were found to be higher than the microhard-
ness values of the Tetric N-Ceram and Spectra ST HV, and 

no statistically significant difference was observed in the 
microhardness values of the Z550 and Z250. Gonulol et al.19 
observed the highest microhardness value in the Z550 com-
posite group for the samples they polymerized with the VALO 
LED LCU for standard and Xtra power mode. Although there 
is no statistically significant difference between Spectra ST 
HV and Tetric N-Ceram, significantly lower microhardness 
values than Z250 and Z550 were observed. Graf et al.26 asso-
ciated spherical filler geometry and reduced average filler size 
with lower mechanical properties, higher sensitivity to aging, 
and reduced reliability. Spectra ST HV included the pre-
polymerized fillers in spherical form. It was reported that the 
pre-polymerized filler content added to the resin also affects 
microhardness. Pre-polymerized fillers are heat-cured and do 
not form covalent chemical bonds with the polymerization 
matrix due to the absence of methacrylate groups on their 
surfaces. This can reduce the resistance of the material.27 
In our study, Spectra ST HV was significantly lower for Xtra 
power mode and standard mode. The fact that the prepoly-
merized fillers contained in Spectra ST HV were placed in the 
material in a fragmented manner and were weakly bonded to 
the matrix may have affected the low surface hardness.

In our study, the fact that the Z550 composite group has 
a higher microhardness value than the Tetric N-Ceram and 
Spectra ST HV composites can be explained by the TEGDMA 
monomer it contains. The properties of the resin matrix 
affect the hardness and general mechanical properties of the 
composite. Studies have shown that TEGDMA forms a much 
denser network than BisGMA.28 In newly formulated com-
posite resins, the TEGDMA content is increased and a more 
reactive diluent monomer, carboxylic anhydrides, and dik-
etones are added; all of these lead to increased cross-linking 
in the polymerized matrix, resulting in improved mechanical 
properties.29 Pieniak et al.30 also compared nanohybrid com-
posites with bulk fill composites in their study and stated that 
the highest microhardness value they recorded belonged to 
the Z550.

In this present study, there was no significant difference 
between the microhardness values of the samples polymer-
ized with standard and Xtra power modes. However, Gonulol 
et al.19 found a significant decrease in the microhardness val-
ues of samples polymerized with VALO LED LCU’s Xtra power 
mode compared to the microhardness values of samples 
polymerized with Elipar and VALO LED LCU’s standard mode 
and VALO high-power mode. Bakkal et al.8 also compared 
VALO LED LCU with a second-generation LED LCU, and they 
found the microhardness values of the samples polymerized 
with VALO LED LCU to be significantly lower than the other 
groups. While Optima and Demi Ultra, which are second-
generation LED LCUs, cure for 20 seconds, VALO cures for 
6 seconds. Also, in their study wavelengths were measured 
as 420-480 nm for Optima, 450-480 nm for Demi Ultra, 
and 395-480 nm for VALO. As a result, they stated that 
optimum curing requires sufficient polymerization time and 
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light output. Szalewski et al.31 studied different cure modes 
as well and concluded that the lowest microhardness value 
was measured for the 3-second fast-cure mode. In accor-
dance with our findings, Lindberg et  al.32 determined that 
there was no significant difference between the microhard-
ness values of composite samples polymerized for different 
periods of time.

CONCLUSION

It could be concluded that a microhybrid composite has the 
highest microhardness values. Besides, different cure modes 
for VALO LED LCU did not affect the microhardness of each 
composite. However, when the composites were compared 
with each other, the effect of Xtra power on microhardness 
values varied depending on the composite. The null hypoth-
esis that the third-generation LED LCU would show micro-
hardness values consistent in all tested materials even with 
shorter curing times was accepted to verify Xtra power’s 
effect on microhardness of composites. Using only one LED 
LCU and not using composite materials containing more 
photoinitiators are the main two limitations of this study. 
Within the limitations of the study, it could be concluded 
that further studies are needed.
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