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What is already known on 
this topic?

•	 Coagulase-negative staphylo-
cocci (CoNS) are part of the nor-
mal human microbiota but have
emerged as significant pathogens,
especially in immunocompro-
mised patients.

•	 The increasing use of indwelling
medical devices has led to a rise in 
CoNS-related bloodstream infec-
tions, with Staphylococcus epider-
midis being the most commonly
isolated species.

•	 Biofilm formation is a crucial viru-
lence factor in CoNS, contributing
to antibiotic resistance and persis-
tent infections.

What this study adds on 
this topic?

•	 Biofilm formation was observed in
73% of the most prevalent CoNS
strains, with significantly higher
rates in MRCoNS (S. epidermidis:
77%, S. hominis: 79%, S. hae-
molyticus: 92%), confirming the
association between methicillin
resistance and biofilm production.

•	 Inducible MLSB (iMLSB) resistance 
was detected in 36% of MRCoNS
and 8% of MSCoNS isolates,
emphasizing the need for routine
D-test screening to prevent treat-
ment failure with clindamycin.

•	 This study reinforces the neces-
sity for effective antimicrobial
stewardship and infection control
measures, given the high preva-
lence of multidrug-resistant and
biofilm-forming CoNS strains in
bloodstream infections.

Abstract
Objective: This study aimed to determine the species, biofilm formation ability, and macrolide-lincosamide-
streptogramin B (MLSB) resistance phenotypes of coagulase-negative staphylococci (CoNS) isolated from 
blood cultures.

Methods: Three hundred CoNS strains isolated from blood samples of patients with bacteremia hospitalized 
in intensive care units and other services in the hospital between 2020 and 2023 were retrospectively evalu-
ated. Blood cultures were analyzed using the Bactec-9120 system. Strains were identified using MALDI-TOF 
MS (Bruker Daltonics, Germany). Antimicrobial susceptibilities were determined using the Kirby–Bauer disc 
diffusion method on Mueller–Hinton agar and evaluated according to EUCAST standards. Biofilm formation 
was assessed by the Congo Red Agar method.

Results: Among isolates, Staphylococcus epidermidis was the most prevalent species (57.6%; P < .05). 
Methicillin-resistant CoNS isolates (MRCoNS) were determined to be more resistant to antibiotics than 
methicillin-susceptible CoNS isolates (MSCoNS) (P < .001). None of the isolates were resistant to vanco-
mycin, teicoplanin, and linezolid. A total of 222 MRCoNS isolates were phenotypically categorized as the 
inducible MLSB, constitutive MLSB, and efflux type resistance were determined in 36%, 9%, and 36% and 
in 78 MSCoNS isolates 8%, 15%, and 38%, respectively. Methicillin-resistant CoNS exhibited significantly 
higher biofilm formation rates (77%) compared to methicillin-susceptible isolates (P < .001).

Conclusion: The results showed that S. epidermidis is the most common CoNS species isolated in blood-
stream infections. Multidrug resistance and increased biofilm formation ability, which come with increasing 
methicillin resistance, can lead to infections that are difficult to treat. It is important to routinely deter-
mine the resistance status of these bacteria for effective antibiotic therapy and prevention of nosocomial 
infections.

Keywords: Biofilm formation, bloodstream infections, coagulase-negative Staphylococci, macrolide-
lincosamide-streptogramin B, Staphylococcus epidermidis

Introduction
Coagulase-negative staphylococci (CoNS), once considered contaminants, are now frequently 

identified as the causative agents of nosocomial infections, especially Staphylococcus epidermidis, 
due to the increased use of indwelling medical devices.1-3

Invasive procedures that allow bacteria to enter the body, a weakened immune system, and the 
use of antibiotics that suppress the microbiota have further contributed to the growing clinical sig-
nificance of CoNS.4,5
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The ability to form biofilm is the most important virulence factor 
of S. epidermidis.6,7 Bacteria in biofilm form are resistant to antibi-
otics, and much research has focused on the role of biofilm forms 
of bacteria in increasing antibiotic resistance and the mechanisms 
that cause this.7,8

Multidrug-resistant (MDR) isolates, which emerged as a result 
of methicillin resistance, complicate the treatment and control of 
staphylococcal infections.9-11 Macrolide resistance in staphylococ-
cal strains develops by ribosomal modification or active pump.12 
Macrolide-lincosamide-streptogramin B (MLSB) group antibiotics 
are agents used in staphylococcal infections and act by inhibiting 
protein synthesis. Since all 3 groups of drugs use the same binding 
site, a mutation developing here results in resistance to 3 different 
antibiotics (MLSB resistance).13

Macrolide-lincosamide-streptogramin B resistance is mediated 
by methylase enzymes encoded by erm genes (mainly ermA, ermB, 
and ermC). Macrolide-lincosamide-streptogramin B resistance can 
be inducible (iMLSB) or constitutive (cMLSB).14 Inducible resistance 
develops in the presence of methylase inducers such as erythro-
mycin (ERY) or azithromycin. The strains are resistant to ERY but 
sensitive to clindamycin.15 Investigating inducible resistance to 
clindamycin, which is widely used in the treatment of staphylo-
coccal infections, is important in preventing treatment failure.15,16 
In strains showing inducible MLSB resistance, antagonism of 
clindamycin by ERY can be demonstrated by induction tests such 
as double disc synergy or D-test. In contrast, strains with cMLSB 
resistance are resistant to both groups of antibiotics.16 Macrolide 
resistance may also develop with the pump system (M phenotype) 
depending on the presence of the mef gene. Resistance developed 
in this way is called macrolide-streptogramin B (MSB) resistance 
and this type of resistance is associated with the msrA gene in 
staphylococci. The MsrA-positive strains are completely suscep-
tible to clindamycin because this antibiotic is not an inducer or 
substrate for the pump.15 The third resistance mechanism is drug 
inactivation (L-type) and is based on the production of enzymes 
that inactivate antibiotics.17 Enzymatic inactivation provides resis-
tance only to structural antibiotics. Erythromycin-sensitive but 
clindamycin-resistant isolates should also be considered.18

The aim of this study was to determine the antibiotic resistance 
patterns, MLSB-type resistance phenotypes and biofilm formation 
of CoNS isolated from blood cultures of hospitalized patients with 
bacteremia.

Methods

Collection
Strains obtained from 300 blood samples taken from patients 

who were followed up with the diagnosis of bacteremia at 
İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine 
hospital between 2020 and 2023 were examined. 240 (80%) 
patients between the ages of 1 and 92 were hospitalized in inter-
nal medicine wards, and 60 (20%) patients were hospitalized in 
intensive care units. Only patients with at least 2 positive blood 
cultures were included, and contaminated strains were excluded. 
Ethics committee approval was received for this study from the 
Ethics Committee of İstanbul Medipol University (Approval no: 
E-10840098-202.3.02-6677, Date: November 11, 2024). Written 
informed consent was obtained from patients who participated in 
this study.

Bacterial Isolation and Identification
Blood samples from patients were inoculated into blood cul-

ture vials and incubated in the Bactec™ 9120 (Becton Dickinson) 

automated blood culture system. Samples with a positive signal 
were inoculated on 5% sheep blood agar, chocolate agar, and 
MacConkey agar plates. They were evaluated after an incuba-
tion period of 24-48 hours at 35°C. Bacteria with catalase-posi-
tive, Gram-positive cocci morphology were identified using the 
Phoenix automated system (BD Diagnostic Systems, Sparks, MD). 
The identification results were confirmed by MALDI-TOF MS 
(Bruker Daltonics).

Antibiotic Susceptibility Test
Antimicrobial resistance for strains was determined by the 

Kirby–Bauer disk diffusion method using the following antibiotics 
and evaluated according to EUCAST criteria: ERY, ciprofloxacin, 
trimethoprim-sulfamethoxazole, clindamycin, gentamicin, tetra-
cycline, rifampicin, teicoplanin, linezolid, and vancomycin.19

Identification of Macrolide-Lincosamide-Streptogramin B 
Phenotypes

Macrolide-lincosamide-streptogramin B phenotypes were iden-
tified by D-test with erythromycin (ERY; 15 μg) and clindamycin 
(C; 2 μg) discs applied at 15 mm intervals on Mueller–Hinton agar. 
After a 24 hour incubation period at 35°C, a flattening zone of 
inhibition adjacent to the ERY disc indicated the inducible type 
(D-shaped zone) of MLSB resistance (iMLSB), while resistance 
to both ERY and C was termed the constitutive type (cMLSB) 
(Figure 1). The absence of a D-shaped zone in ERY-resistant and 
C-sensitive strains was interpreted as the efflux phenotype.

Biofilm Formation
The Congo red-agar (CRA) method was selected for the qualita-

tive assessment of biofilms in CoNS strains.14 Black colonies were 
considered strong biofilm producers, while red colonies were con-
sidered non-biofilm producers (Figure 2). While the CRA method 
provides a practical assessment of biofilm formation, its qualitative 
nature is a limitation compared to quantitative techniques such 

Figure 1.  D-test positive results on Mueller–Hinton agar.



3

Cerrahpaşa Med J 2025; 49: 1-7

as crystal violet staining in microtiter plate assays. Future studies 
should consider incorporating these methods for a more compre-
hensive analysis.

Statistical Analysis
Statistical analysis was performed using IBM Statistical Package 

for Social Sciences software (version 22.0; IBM SPSS Corp.; 
Armonk, NY, USA). Antibiotic susceptibility profiles, MLSB pheno-
types, and biofilm formation rates were compared for MR-CoNS 
and MS-CoNS and expressed as percentages. A chi-square test 
was used to assess the association between 2 groups of categorical 
variables. A P-value ≤ .05 was considered statistically significant. 
Confidence intervals for resistance rates are shown in Table 1 to 
enhance the clarity and interpretability of the results.

Results
Among 300 CoNS isolates, S. epidermidis was the most preva-

lent species (57.6%; P < .05) followed by Staphylococcus homi-
nis (22%), Staphylococcus haemolyticus (13%), Staphylococcus 
capitis (3%), Staphylococcus saprophyticus (1%), Staphylococcus 
cohnii (1%), Staphylococcus lugdunensis (1%), Staphylococcus 
warneri (0.6%), Staphylococcus schleiferi (0.3%), and 
Staphylococcus pettenkoferi (0.3%) (Figure 3).

The rate of resistance to methicillin was 74%. Methicillin-
resistant CoNS isolates were determined to be more resistant to 
antibiotics than MSCoNS isolates (P < .001). Strains (100%) were 
found susceptible to teicoplanin, vancomycin, and linezolid. 
Resistance rates of MRCoNS and MSCoNS isolates to the anti-
bacterial agents, respectively, were as follows: gentamicin 48% 
and 11%, ERY 81% and 61%, clindamycin 45% and 23%, trime-
thoprim-sulfamethoxazole 56% and 19%, ciprofloxacin 69% and 
20%, tetracycline 44% and 19%, and rifampicin 37% and 3% 
(Table 1; Figure 4).

The iMLSB, cMLSB, and efflux type (MSB) resistance were deter-
mined in 36%, 9%, and 36% of MRCoNS and in 8%, 15%, and 
38% of MSCoNS, respectively (Table 2; Figure 5).

Figure 2.  Congo red-agar method for biofilm formation.

Table 1.  Antibiotic Resistance Rates of MRCoNS and MSCoNS Strains

Antibiotcs
Total (n = 300)

n (%)
MRCoNS (n = 222)

n (%)
MRCoNS (%) 

(95% CI)
MSCoNS 
(n = 78)

MSCoNS (%) 
(95% CI) P

Erythromycin 227 (75.6) 179 (80.6) 80.6 (74.9-85.3) 48 (61.5) 61.5 (50.4-71.6) .001*

Ciprofloxacin 169 (56.3) 153 (69.9) 69.9 (62.6-74.6) 16 (20.5) 20.5 (13.0-30.8) <.001*

Trimethoprim-Sulfamethoxazole 140 (46.6) 125 (56.3) 56.3 (49.7-62.7) 15 (19.2) 19.2 (12.0-29.3) <.001*

Clindamycin 119 (39.6) 101 (45.4) 45.4 (39.1-52.1) 18 (23) 23.0 (15.1-33.6) <.001*

Gentamicin 115 (38.3) 106 (47.7) 47.7 (41.3-54.3) 9 (11.5) 11.5 (6.2-20.5) <.001*

Tetracycline 113 (37.6) 98 (44.1) 44.1 (37.8-50.7) 15 (19.2) 19.2 (12.0-29.3) <.001*

Rifampicin 84 (28) 82 (36.9) 36.9 (30.9-43.5) 2 (2.56) 2.56 (0.7-8.9) <.001*

Teicoplanin 0 (0) 0 (0) – 0 (0) ​ NA

Linezolid 0 (0) 0 (0) – 0 (0) ​ NA

Vancomycin 0 (0) 0 (0) – 0 (0) ​ NA

The resistance rates of MRCoNS to erythromycin and ciprofloxacin were 80.6% (95% CI: 74.9-85.3) and 69.9% (95% CI: 62.6-74.6), respectively, 
while rates for MSCoNS were significantly lower at 61.5% (95% CI: 50.4-71.6) and 20.5% (95% CI: 13.0-30.8) (P < .001). The resistance rates of 
MRCoNS to trimethoprim-sulfamethoxazole and clindamycin were 56.3% (95% CI: 49.7-62.7) and 45.4% (95% CI: 39.1-52.1), respectively, while 
rates for MSCoNS were significantly lower at 19.2% (95% CI: 12.0-29.3) and 23.0% (95% CI: 15.1-33.6) (P < .001). The resistance rates of MRCoNS 
to gentamicin and tetracycline were 47.7% (95% CI: 41.3-54.3) and 44.1% (95% CI: 37.8-50.7), respectively, while rates for MSCoNS were signifi-
cantly lower at 11.5% (95% CI: 6.2-20.5) and 19.2% (95% CI: 12.0-29.3) (P < .001). The resistance rate of MRCoNS to rifampicin was 36.9% (95% 
CI: 30.9-43.5), while the rate for MSCoNS was significantly lower at 2.56% (95% CI: 0.7-8.9) (P < .001). No resistance to teicoplanin, linezolid, or 
vancomycin was observed in either MRCoNS or MSCoNS isolates.
MRCoNS, methicillin-resistant CoNS; MSCoNS: methicillin-susceptible CoNS; NA, not applicable.
*Chi-square was conducted between the resistance rates for the MR-CoNS and MS-CoNS strains. P-value ≤ .05 was statistically significant.
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Among all CoNS, S. epidermidis, S. hominis, and S. haemolyti-
cus were the top 3 prevalent strains with 29 (93%). In methicil-
lin-resistant S. epidermidis, S. hominis, S. haemolyticus strains, 
resistance phenotypes are presented in Table 3 with details.

Biofilm formation ability was found to be 73% (202) in the top-3 
prevalent strains of CoNS. Biofilm formation rates and methicillin 
resistance rates by species are presented in Table 4.

Discussion
Cagulase-negative staphylococcis are typically nonpathogenic 

organisms that reside in the human skin and mucosal microbiota. 
However, with the growing use of prosthetic devices and medi-
cal instruments, these bacteria have become significant pathogens, 
particularly in catheter-related and bloodstream infections, espe-
cially in immunocompromised individuals.20

In this study, 300 CoNS strains isolated from blood samples of 
patients diagnosed with bloodstream infections were analyzed. 
The predominant strain isolated was S. epidermidis (57.6%), fol-
lowed by S. hominis (22%) and S. haemolyticus (13%). Similar 

studies conducted in Türkiye have reported the prevalence of 
S. epidermidis strains isolated from clinical samples to range 
between 44% and 51%, followed by S. hominis and S. haemolyti-
cus, respectively.21-23

The strain distribution found in this study was consistent with 
these reported data. The ability of bacteria to form biofilms is 
thought to play an important role in the suppression of antibiotics 
and the immune system.24 In this study, the ability to form biofilm 
was determined as 74% in S. epidermidis strains, 70% in S. hominis 
strains, and 70% in S. haemolyticus strains. Biofilm formation rates 
were higher in methicillin-resistant strains: 77% in S. epidermidis, 
79% in S. hominis strains, and 92% in S. haemolyticus strains.

The biofilm formation rates observed in MRCoNS (77%) align 
with global findings where methicillin resistance is a strong pre-
dictor of biofilm formation. This association underscores the need 
for targeted therapeutic strategies to disrupt biofilms and combat 
resistance.25

Similar studies have reported that methicillin-resistant S. epider-
midis strains cause device-related infections due to their biofilm 
production potential.26,27 The findings suggest the problems that 
biofilm-forming strains may pose in the treatment of nosocomial 
infections.

Figure 3.  Distribution of the 300 CoNS strains.

Figure  4.  Comparison of antimicrobial resistance rates of MRCoNS and MSCoNS strains. CC, clindamycin; CIP, ciprofloxacin; E, 
erythromycin; GEN, gentamycin; RA, rifampicin; SXT, trimethoprim-sulfamethoxazole; TE, tetracycline.

Table 2.  Distribution of MLSB Phenotypes Among MRCoNS and 
MSCoNS Strains

Phenotypes

MRCoNS 
(n = 222)

MSCoNS 
(n = 78)

Total 
(n = 300)

Pn (%) n (%) n (%)

MLSB 80 (36) 6 (8) 86 (28.6) <.001*

cMLSB 19 (9) 12 (15) 31 (10.3) .137

MSB 80 (36) 30 (38) 110 (36.6) .702

L-type 2 (0.9) 0 (0) 2 (0.6) 1

S-type 41 (18) 30 (38) 71 (23.6) .001*

Total 222 (100) 78 (100) 300 (100) ​
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Multidrug resistance seen in methicillin-resistant staphylococci 
has become an important health problem that reduces the treat-
ment success of staphylococcal infections and increases the mor-
tality and morbidity of patients.28-31 Methicillin resistance was 
detected at 74%. Antimicrobial susceptibility patterns of methicil-
lin resistant S. epidermidis strains showed a high level of resistance 
as follows: 81%, 56%, 44%, 45%, 48%, 37%, 69% for ERY, trime-
thoprim-sulfamethoxazole, tetracycline, clindamycin, gentamicin, 
rifampicin, and ciprofloxacin, respectively. In a similar study, it 
was reported that the methicillin resistance rate in S. epidermi-
dis strains was 86%, and 39% of these strains were resistant to at 
least 4 antibiotics.29 Mirzaei et al32 detected ERY resistance in 80% 
of the strains they isolated and drew attention to the increase in 
macrolide resistance. Glycopeptide group antibiotics are used in 
the treatment of methicillin-resistant staphylococcal infections.33 
However, in recent years, vancomycin and teicoplanin resistance 
has also been reported in S. epidermidis.29 All strains we tested 
were sensitive to vancomycin and teicoplanin.

Macrolide-lincosamide-streptogramin B resistance rates vary 
between countries and even between hospitals in the same coun-
try. Recent studies highlight the rising prevalence of MLSB resis-
tance globally, underscoring the need for regional surveillance to 

inform treatment protocols and antimicrobial stewardship efforts.25 
In this study, iMLSB, cMLSB, and MSB type resistance phenotypes 
were found to be 36%, 9%, and 36% in MRCoNS strains, and 8%, 
15%, and 38% in MSCoNS strains, respectively. Inducible MLSB 
was found to be 31%, 0%, and 28% in methicillin-resistant S. 
epidermidis, S. hominis, and S. haemolyticus strains, respectively. 
Constitutive MLSB was found to be 11%, 22%, and 14%, respec-
tively. The MSB was found to be 31%, 63%, and 56%, respec-
tively. In this study, the most common resistance phenotype was 
found to be inducible MLSB resistance. Some studies, such as Li 
et al34 and Szczuka et al18 have shown that iMLSB resistance can 
also be commonly found in S. haemolyticus and S. hominis spe-
cies. However, Uyar Güleç et al35 reported the rates of cMLSB and 
iMLSB and MSB phenotypes as 30.5%, 18.3%, and 6.1%, respec-
tively, in 28 CoNS strains included in their study. Szemraj et al36 
also observed a high rate of constitutive MLSB resistance type in 
S. epidermidis, S. hominis, and S. haemolyticus strains isolated 
from blood.

The study shows that S. epidermidis is the most prevalent CoNS 
isolated as a causative agent of bloodstream infection in the hospi-
tal. Staphylococcus hominis, S. haemolyticus, S. capitis, and S. sap-
rophyticus also cause infections at increasing rates. The methicillin 

Figure 5.  Resistance phenotype rates of the MRCoNS, MSCoNS strains.

Table 3.  Comparative Statistical Analysis of Resistance Phenotypes of the Top 3 Prevalent CoNS with/Without Methicillin Resistance.

Phenotype

M.R. S. 
epidermidis

M.S. S. 
epidermidis

n (%) P

M.R. S. 
hominis

M.S. S. 
hominis

n (%) P

M.R. S. 
haemolyticus

M.S. S. 
haemolyticus

n (%) Pn (%) n (%) n (%) n (%) n (%) n (%)

iMLSB 38 (31) 0 (0) 38 <.001 0 (0) 0 (0) 0 NA 10 (28) 0 (0) 10 .035

cMLSB 13 (11) 1 (2) 14 .068 11 (22) 0 (0) 11 .035 5 (14) 0 (0) 5 .323

MSB 38 (31) 24 (47) 62 .069 32 (63) 7 (50) 39 .111 20 (56) 0 (0) 20 .005

L-type 4 (3) 6 (12) 10 .066 0 (0) 0 (0) 0 NA 0 (0) 0 (0) 0 NA

S-type 29 (24) 20 (39) 49 .061 8 (16) 7 (50) 15 .144 1 (3) 3 (100) 4 .077

Total 122 (100) 51 (100) 173 ​ 51 (100) 14 (100) 65 ​ 36 (100) 3 (100) 39 ​

*Chi-square was conducted between the resistance rates for the MR and MS strains. P-value ≤ .05 was statistically significant.
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resistance rate is 74%, while iMLSB resistance was found to be 
36% in methicillin-resistant strains, and this rate was determined 
to be 8% in methicillin-susceptible strains (P < .005). In this study, 
a high rate of methicillin resistance (80%) was detected in biofilm-
forming strains.

These findings highlight the importance of routine surveillance 
of MLSB resistance phenotypes and biofilm formation in CoNS 
isolates. Implementation of stricter infection control measures, 
coupled with biofilm-targeted therapies, could mitigate the impact 
of these MDR pathogens in nosocomial settings.37 Routine screen-
ing for methicillin resistance and MLSB phenotypes, combined 
with efforts to prevent biofilm formation, is critical for optimiz-
ing treatment protocols and controlling the spread of MDR CoNS. 
Future studies should focus on developing biofilm-disrupting 
agents and exploring the genetic basis of resistance phenotypes in 
diverse clinical settings.
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